

MUGBERIA GANGADHAR MAHAVIDYALAYA

P.O.-BHUPATINAGAR, Dist.-PURBA MEDINIPUR, PIN.-721425, WEST EENGAL, INDIA NAAC 4th Cycle Re-Accredited 'A' Level Govt. Aided College CPE (Under UGC XII Plan) & NCTE Approved Institutions DBT Star College Scheme Award Recipient

E-mail : mugberia_college@rediffmail.com // www.mugberiagangadharmahavidyalaya.ac.in

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

PROGRAMME OUTCOME (PO), COURSE OUTCOME (CO) AND PROGRAMMESPECIFIC OUTCOME (PSO) FOR END SEMESTER STUDENTS POSTGRADUATE COURSE: 2023-2024

Programme Name: M.SC(MATHEMATICS)

PROGRAMME OUTCOMES:

PO1: Disciplinary Knowledge: To acquire comprehensive and sufficient knowledge of understanding in Mathematics .

PO2: Critical Reasoning & Problem Analysis: To acquire the ability of deep study and then critically to think and analyse the subject of mathematics in its different areas.

PO3: Develop Interdisciplinary Knowledge: To enable students in developing an effective approach to Interdisciplinary study and enable them to build their own interdisciplinary pathway by choosing courses which makes sense to them.

PO4:Communication skill and attitudes: Excellent communication of mathematics in geometrical realization, documentation, makes effective presentation to develop other branches of sciences, to think existing open programme in mathematics using C –language, MATLAB, Lingo software. Also Study skill development Course on LaTeX

PO5:Self- directed Learning:Ability to work independently, study the subjects in its depth and apply thoughts for solving the problems in various field.

PO6: Experimental learning and Employability options:Students are able to identify problems, use constructive reasoning to make viable arguments, and applying mathematics in real-life problems Also they will able to find job in different sectors of mathematics and mathematics related subjects.

PO7: Develop Research Related Skill:Capability of thinking the various field of Mathematics advances in those fields and clear concept about them so that appropriate questions are formed on related fields.

PROGRAMME SPECIFIC OUTCOME:

PSO1: Thinking every topic in a critical manner.

PSO2: When there arise situation to provide information about any problem students are able to identify it, locate, evaluate and use the information effectively.

PSO3: Realize, evaluate, and formulate different quantitative models arising in social science, business and other fields.

PSO4: Apply mathematical and logical argument to develop and formulate every problem in a unique way.

PSO5:Acquire clear concept and knowledge to understand every problem and use mathematical and statistical method by the students through the course.

PSO6: Aware about the responsibility to become a citizen of the society and promise to scatter the scope of acquire knowledge.

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

Course Outcomes (CO) for End Semester Students: 2023-24

CO21: (MTM-401-Functional Analysis)

CO21:1: Idea about Normed Space, fundamental properties of Normed Space, bounded linear transformation B(X,Y), Banach Space, Hahn- Banach Extension Theorem.

CO21:2: Idea about Conjugate Space, Reflexive Spaces, Uniform Roundedness Principle, Closed Graph theory, Open Mapping Theorem. Fundamental concept of Inner Product Space, orthonormal Basis, Varies properties of Inner Product Space and related theorem like Parallelogram law, Cauchy-Schwarz inequality, Projection Theorem.

Learn about weak and strong convergence.

CO22: (MTM-402.1- Fuzzy Mathematics with Application, MTM402.2-Soft Computing)

CO22:1:Define fuzzy sets, α -cuts, fuzzy complements.Discuss of operations on fuzzy sets, fuzzy numbers,Illustrate fuzzy relations, binary fuzzy sets, fuzzy number, fuzzy equivalence relations.State some application on fuzzy set.

CO22.2:Learnsoft computing, fuzzy logic, Genetic Algorithm, Neural networks, Application of fuzzy logic concepts in scientific problems, Solution of optimization problems using Genetic Algorithm. Neural Network approaches in scientific analysis, design, and diagnostic problems.

CO23: (MTM-403.1: Magneto Hydro-Dynamics, MTM-403.2: Stochastic Process and Regression)

CO23:1:Learn about Maxwell's electro magnetic field equations when medium in motion. Lorentz's force. To know about the equations of motion of a conducting fluid. Basic equations. Simplification of the electro magnetic field equation. Magnetic Reynolds number. Alfven theorem. Magnetic body force. Ferraro's law ofIsorotation . Laminar Flow of a viscous conducting liquid between parallel walls in transverse magnetic fields. M.H.D. Flow. Understanding past a porous flat plate without induced magnetic field. MHD Couelte Flow under different boundary conditions, Magneto hydro dynamics waves.

CO23.2:Concept of Markov chains with finite and countable state space and classification of states.Understanding of random walk, Gambler's ruin problem. Markov processes in continuous time. Poisson's process partial correlation. Multiple correlation. Advanced theory of linear estimation.

CO24: (MTM-404B Special Paper-OR: Nonlinear Optimization)

CO24.1:-To know the non-linear programming problem the nature of optimization and scope of the theory (Farka's Theorem, Existence Theorem etc.).To know about Quadratic Programming, Geometric Programming and Stochastic programming and their problems and solution

CO24.2:Game Theory (bi-matrix game)Learn Legendre and Bessel's equation and find their power series solution.

CO25:MTM-405B(Special Paper-OR: Operational Research Modelling-II)

CO25.1:-Understand the optimal control of functional using calculus of variation technique, learn Pontryagn's principle, Bang Bang Control.

CO25.2: Learn the Concept of reliability and use parallel and series system to get a reliability of machines, age, stress and mission time.Learn Entropy function, Encoding, Decoding, Noiseless Channel, marginal and conditional entropies also.

CO26:(MTM-495Special Paper-OR: Lab. on MATLAB and LINGO)

Able to solve problems on Advanced Optimization and Operations Research by using MATLAB and LINGO software in computer (Simplex Method, Revised Simplex Method, Stochastic Programming, Geometric Programming, Bi-matrix Games, Queuing Theory, Wolfe's Modified Method, IPP by Gomory's Cutting Plane Method, Inventory, Monte Carlo Simulation Technique, Dynamic Programming, Reliability).

CO27:(MTM-406: Dissertation Project Work)

Performance of dissertation Project on Tutorial/Review Work on Research Papers.

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

DETAILED SYLLABUS OF ALL SEMESTER PG COURSES

Semester-I

MTM-101

RealAnalysis

50

Complete Metric spaces, compactness, connectedness (with emphasison \mathbb{R}^n), Heine-BorelTheorem, Separable and non-separable metric spaces.

Functionsofboundedvariation, R-S Integral.

Measurablesets.ConceptofLebesguefunction.Innerandoutermeasure.It'ssimpleproperties.Setofmeasurezero.Cantor set,Borel setand theirmeasurability, Non-measurablesets.

Measurablefunction:Definitionandit'ssimpleproperties,Borelmeasurablefunctions,sequence of measurable functions, Statement of Lusin's theorem, Egoroff's theorem. Simplefunctions and it's properties.

Lebesgue integral on a measurable set: Definition. Basic simple properties. Lebesgue integralof a bounded Simple properties. function over а set of finite measure. Integral of nonnegativemeasurable functions, General Lebesgue integral. Bounded convergence theorem for a sequence of Lebesgue integrable function, Fatou's lemma. Classical Lebesgue dominated convergencetheorem. Monotone convergence theorem, Relation between Lebesgue integral and Riemannintegral

References:

- 1. W.Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill.
- 2. W.Rudin, Realand Complex Analysis, International Student Edition, McGraw-Hill.
- 3. T.Apostol, Mathematical Analysis, 2nd ed., Narosa Publishers.
- 4. S.Kumaresan, TopologyofMetricSpaces, 2nded., NarosaPublishers.
- 5. InderK.Rana, AnIntroductiontoMeasureandIntegration(2nded.), NarosaPublishingHouse, NewDelhi.
- 6. P.R.Halmos, Measure Theory, Graduate Textin Mathematics, Springer-Verlag.
- 7. H.L.Royden, Real Analysis, 3rded., Macmillan.

Learning Outcomes of the course:

Upon successful completion of this course, the students will learn the following:

1. Verify whether a function is a function of bounded variation and find the R-S integral of a bounded function.

2. Know the measurability of a set, integrability of any function and the Monotone convergence theorem.

3. Understand the fundamentals of measure theory and be acquainted with the proofs of the fundamental theorems underlying the theory of integration.

4. They will develop a perspective on the broader impact of measure theory and have the ability to pursue further studies in this and related area.

5. Explain the concept of length, area, volume using Lebesgue's theory.

6. Apply the general principles of measure theory and integration in such concrete subjects as the theory of probability or financial mathematics.

MTM-102

ComplexAnalysis

50

The definition of an analytic function. Cauchy- Riemann differential equation. Construction of analytic function. Jardan arc. Contour. Rectifiable arcs. Cauchy's theorem. Cauchy's integralformula.Morer'stheorem.Liouville'stheorem.Taylor'sandLaurent'sseries.Maximummodulusprinci ple.

Residues and Poles:Isolated Singular Points, Residues, Cauchy's Residue Theorem ,ResidueatInfinity,TheThreeTypesofIsolatedSingularPoints,ResiduesatPoles,ZerosofAnalytic

Functions, Zeros and Poles, Behavior of Functions Near Isolated Singular

Application of Residues: Evaluation of Improper Integrals, Improper Integrals from FourierAnalysis, Jordan's Lemma, Indented Paths, An Indentation Around a Branch Point, IntegrationAlong a Branch Cut, Definite Integrals Involving Sines and Cosines, Argument Principle,Rouch'e'sTheorem,Inverse LaplaceTransforms

MappingbyElementaryFunctions:LinearTransformations,Mappingsby1/z,LinearFractionalTransformation s,AnImplicitForm, Mappingsof the UpperHalfPlane,The Transformationw

= sin z, Mappings by z2 and Branches of z1/2, Square Roots of Polynomials, Riemann SurfacesConformalMapping:PreservationofAngles,ScaleFactors,LocalInverses,HarmonicConjugates,Tran sformationsofHarmonicFunctions,TransformationsofBoundaryConditions,The Schwarz–Christoffel Transformation: Mapping the Real Axis Onto a Polygon, Schwarz–ChristoffelTransformation, Trianglesand Rectangles, DegeneratePolygons.

References:

- 1. ComplexVariableandApplications, J.W.BrownandR.V.Churchill, 8thEdition, GcGrawHill.
- 2. FoundationsofComplex Analysis, S.Ponnusamy, Narosa, 1995.

Learning Outcomes of the course:

Upon successful completion of this course, the students will learn the following:

- 1. What is multi-valued function and difference from the definition of single-real valued function?
- 2. How the residue theorem can be applied to calculate some of the improper as well as definite integrals.
- 3. Mapping by different elementary functions
- 4. What is conformal mapping and how it can be applied to some of the fluid dynamics problem.
- 5. What is analytic continuation?

MTM-103 OrdinaryDifferentialEquationsandSpecialFunctions

Differentialequation:Homogeneouslineardifferentialequations,Fundamentalsystemofintegrals,Sin gularityofalineardifferentialequation,Solutionintheneighbourhoodofasingularity, Regular integral, Equation of Fuchsian type, Series solution by Frobenius

method.Hypergeometricequation.Hypergeometricfunctions,Seriessolutionnearzero,oneandinfinit y,Integralformulaforthehypergeometricfunction,Differentiationofhypergeometricfunction,Theco nfluenthypergeometricfunction,Integralrepresentationofconfluenthypergeometricfunction.

Legendre equation: Legendre functions, Generating function, Legendre functions of first kindand second kind, Laplace integral, Orthogonal properties of Legendre polynomials, Rodrigue'sformula,Schlaefli's integral.

Bessel equation: Bessel function, Series solution of Bessel equation, Generating function, Integrals representations of Bessel's functions, Hankel functions, Recurrence relations, Asym ptotic expansion of Bessel functions.

Green'sFunction:Green'sFunctionanditsproperties,Green'sfunctionforordinarydifferentialequations,Application to BoundaryValue Problems.

EigenValueProblem:OrdinarydifferentialequationsoftheStrum-

Liouvilletype,PropertiesofStrumLiouvilletype,ApplicationtoBoundary

Value Problems, Eigenvalues and Eigenfunctions, Orthogonality theorem, Expansion theorem.

SystemofLinearDifferentialEquations:SystemsofFirstorderequationsandtheMatrixform,Represen tation of nth order equations as a system, Existence and uniqueness of solutions of systemofequations, Wronskian of vectorfunctions.

References:

- 1. G.F.Simmons:DifferentialEquations,TMHEdition,NewDelhi,1974.
- 2. M.S.P.Eastham: TheoryofOrdinaryDifferentialEquations, VanNostrand, London, 1970.
- 3. S.L.Ross:DifferentialEquations(3rdedition),JohnWiley&Sons,New York,1984.

Learning Outcomes of the course:

Upon successful completion of this course, the students will learn the following:

1. Three important topics of ODEs such as the Sturm-Liouville problem, Green's function and systems of linear differential equations.

2. On solving the SL problem, a broad idea can be carried on eigen value and eigen function which helps a lot to solve real-life problems.

3. Green's function approach for solving complex initial and boundary value problems involving differential equations.

4. Modelling real-life problems as a system of linear differential equations and its solution method.

5. Learners achieve the overall concept for solving system of differential equations which have a great impact to extract the solutions for real-life problems.

6. The three important special functions such as Hypergeometric differential equation, Legendre differential equation, Bessel's function and their properties.

7. Learners mainly achieve the solution procedure of special type differential equations which have many applications in engineering design problems and these are more related with real-life complex problems also

MTM-104 AdvancedProgramminginCand MATLAB

Programming in C: Review of basic concepts of C programming, Arrays, structureand union, Enum, pointers, pointers and functions, pointers and arrays, array ofpointers, pointers and structures, strings and string handling functions, Dynamicmemory allocation: using of malloc(), reallc(), calloc() and free(), file handlingfunctions: use of fopen, fclose, fputc, fgets, fputs, fscanf, fprintf, fseek, putc, getc,putw,getw,append,lowlevelprogrammingandCpreprocessor:Directive,#define,MacroSubst itution,conditionalcompilation, #if,#ifdef,#ifndef,#else, #endif.

 $\label{eq:programming} Programming in MATLAB: The Matlabwork space, data types, variables, assignment statements, arrays, sets, matrices, string, time, date, cell arrays and structures, introduction to M – file scripts, input and output functions, conditional control statements, loop control statements, break, continue and return statements.$

References:

- 1. Kernighan BW, Ritchie DM. The Cprogramming language. 2006.
- 2. BalagurusamyE. programminginANSIC. Tata McGraw-Hill Education;2012.
- 3. ByronGottfriedandJitenderChhabra,ProgrammingwithC(Schaum'sOutlinesSeries),2017
- 4. GilatA.MATLAB:an IntroductionwithApplications.NewYork:Wiley; 2008.
- 5. PalmIIIWJ.IntroductiontoMATLABfor Engineers.NewYork:McGraw-Hill;2011.
- 6. ChapmanSJ.MATLABprogramming with applications for engineers. Cengage Learning; 2012.

Learningoutcomesofthecourse:

Uponsuccessfulcompletionofthiscourse, students will learn the following:

- 1. Thefeaturesofnumericcomputation, advanced graphics and visualization using MATLAB.
- 2. Arraysandmatricestosolvethevarioustypesofproblemssuchasalgebraic,differential,statistical,p lottingetc usingMATLAB.
- 3. Pointersinfunction, structure, union, dynamic memory management to construct linked list using C Language.
- 4. Pointersinfunction, structure, union, dynamic memory management to construct linked list using C Language.

MTM-105

ClassicalMechanicsandNon-linearDynamics

50

Motion of a system of particles. Constraints. Generalized coordinates. Holonomic and non-holonomic system. Principle of virtual work. D'Alembart's Principle. Lagrange's equations.Plane pendulum and spherical pendulum. Cyclic co-ordinates.Coriolis force. Motion relativeto rotatingearth.

Principle of stationary action. Hamilton's principle. Deduction of Lagrange from Hamilton'sprinciple.Brachitochroneproblem.Lagrange'sequationsfromHamilton'sprinciple.Invariancetransformations.Conservationlaws. Infinitesimaltransformations.Space-timetransformations.

Hamiltonian. Hamilton's equations. Poisson bracket. Canonical transformations. Liouville'stheorem.

Small oscillation about equilibrium. Lagrange's method. Normal co-ordinates. Oscillationsunder constraint. Stationary character of a normal mode. Small oscillation about the state of steadymotion.Normalcoordinates Orientation and displacement of a rigid body. Eulerian angles. Principal axis transformation.Eulerequations of motion.Motion of afreebodyabout a fixed point.

Special theory of relativity in Classical Mechanics:-Postulates of special relativity. Lorentztransformation.ConsequencesofLorentztransformation.Forceandenergyequationsinrelativisticmechanics. Nonlinear Dynamics: Linear systems. Phase portraits: qualitative behavior.Linearization at afixed point. Fixed points. Stability aspects. Lyapunov functions (stability theorem). Typicalexamples.Limitcycles.Poincare-Bendixsontheory.Bifurcations.Differenttypesofbifurcations.

References:

- 1. H.Goldstein, *ClassicalMechanics*, Addison-Wesley, Cambridge, 1950.
- 2. A.S.Gupta, Calculus of Variations with Applications, Prentice-HallofIndia, New Delhi, 2005.
- 3. B.D.GuptaandS.Prakash, *ClassicalMechanics*, KedarNathRamNath, Meerut, 1985.
- 4. T.W.B.Kibble, *ClassicalMechinics*, OrientLongman, London, 1985.
- 5. N.C.RanaandP.S.Joag, *ClassicalMechanics*, TataMcGraw-HillPublishingCompanyLimited, NewDelhi, 2004.

Learningoutcomesofthecourse:

Upon success ful completion of this course, the students can do the following:

- 1. The student will able to apply the Lagrangian formalism to analyze problems in Mechanics; dissect and describe the dynamics of systems of particles, rigid bodies, and systems in noninertial reference frames.
- 2. The student will deconstruct complex problems into their building blocks. Translate physicalproblems into appropriate mathematical language and apply appropriate mathematical tools to analyze and solve the resulting equations.
- 3. Students will demonstrate the ability to apply basic methods of classical mechanics towardssolutions of various problems, including the problems of complicated oscillatory systems, themotion frigid bodies, etc.

MTM-106 GraphTheory

Basic graph theoretical concepts: paths and cycles, connectivity, trees, spanning subgraphs,bipartite graphs, Hamiltonian and Euler cycles. Distance and centre, Cut sets and cut vertices.Colouring and matching. Four colour theorem (statement only). Planar graphs, Dual graph.Directed graphs and weighted graphs. Matrix representation of graphs, Algorithms for shortestpathandspanningtrees,Intersectiongraph,Applicationsof graphsinoperationsresearch.

References:

- 1. West, D.B. (2001). Introduction to graphtheory, UpperSaddleRiver: Prenticehall.
- 2. Deo,N.(2017). *Graphtheorywithapplicationstoengineeringandcomputerscience*. CourierDover Publications.
- 3. Chartrand, G. (2006). Introduction to graph theory. TataMcGraw-HillEducation.
- 4. Gross, J.L., & Yellen, J. (2005). *Graphtheoryand itsapplications*. CRC press.

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. Understandandapplythefundamentalconceptsingraphtheory.
- 2. Modellingof real-lifeproblemsusingtheconceptsof graph theory.
- 3. Conceptofthe graph,tree,Eulergraph, planar graph, cutsetandCombinatorics. Solvingcapabilityfor solvingpractical problemsinscience,businessandindustry

MTM-197 Lab.1:(ComputationalMethods:UsingMATLAB)

Problem:20marks;Lab. NoteBookandViva-Voce:5.

Workingwithmatrix:Generatingmatrix,Concatenation,Deletingrowsandcolumns.Symmetric matrix, matrix multiplication, Test the matrix for singularity, magic matrix. Matrixanalysis using function: norm, normest, rank, det, trace, null, orth ,rref, subspace, inv, expm,logm,sqrtm,funm. Array:Addition,Subtraction,Element-by-elementmultiplication,Element-by-

25

elementdivision,Element-by-element left division, Element-by-element power. Multidimensional Arrays, CellArrays,Characters and Text in array,

GraphPlotting:PlottingProcess,CreatingaGraph,GraphComponents,FigureTools,Arranging Graphs Within a Figure, Choosing a Type of Graph to Plot, Editing Plots, PlottingTwo Variables with Plotting Tools, Changing the Appearance of Lines and Markers, AddingMore Data to the Graph, Changing the Type of Graph, Modifying the Graph Data Source,AnnotatingGraphs forPresentation, ExportingtheGraph.

Using Basic Plotting Functions: Creating a Plot, Plotting Multiple Data Sets in One Graph, Specifying Line Stylesand Colors, Plotting Lines and Markers, Graphing Imaginary and ComplexData, AddingPlotstoanExistingGraph, FigureWindows, DisplayingMultiplePlotsinOn eFigure, Controlling the Axes, AddingAxisLabels and Titles, SavingFigures.

Programming:ConditionalControl-if,else,switch,LoopControl-

for, while, continue, break, ErrorControl – try, catch, Program Termination–return.

Scripts and Functions: Scripts, Functions, Types of Functions, Global Variables, Passing String Argume ntsto Functions, The eval Function, Function Handles, Function Functions, Vectorization, Preallocation.

LinearAlgebra:SystemsofLinearEquations,InversesandDeterminants,Factorizations,Powersand Exponentials, Eigenvalues, SingularValues.

Polynomials:PolynomialfunctionsintheMATLAB®environment,RepresentingPolynomials,Evalu atingPolynomials,Roots,Derivatives,Convolution,PartialFractionExpansions,PolynomialCurveFit ting, CharacteristicPolynomials.

References:

- 1. GilatA.MATLAB:an IntroductionwithApplications.NewYork:Wiley; 2008.
- 2. Palm IIIWJ.IntroductiontoMATLABforEngineers.NewYork:McGraw-Hill;2011.
- **3.** ChapmanSJ.MATLABprogrammingwithapplicationsforengineers.CengageLearning;201 2.
- 4. LopezC.MATLABprogrammingfornumericalanalysis.Apress;2014.

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. The interactive examples and hands-on problem-solving techniques.
- 2. Theutility of basic MATLABand its demonstration.
- 3. Vectorandmatrixmanipulations, plotting of functions and data, solution ODE and its graph, and the creation of user interfaces, etc.
- 4. Applicationsinvarious disciplinessuch as engineering science and economics.

10

Semester -II

MTM-201 Fluid Mechanics 50

Compressible/Incompressible flow, Newtonian/Non-Newtonian fluids, Rotational/irrotationalflows, Steady/Unsteady Flow, Uniform/Non uniform Flow, One, Two or three DimensionalFlow, Laminaror TurbulentFlow), Preliminaries for the derivation of governing equation(Coordinate systems: Lagrangian description and Eulerian description)Models of the flow(Finite Control Volume andInfinitesimal Fluid Element),Substantial Derivative, Source ofForces)

DerivationofGoverningEquations:DerivationofContinuityEquation,DerivationofMomentum Equation, Special case (Incompressible Newtonian Fluid), Physical interpretationofeach term, Derivation ofEnergyEquation, BoundaryConditions.

Boundary Layer Theory: Prandtl's Concept of Boundary Layer, Boundary Layer Flow along aFlat Plate, Governing Equations, Boundary Conditions, Exact Solution of the Boundary-LayerEquationsforPlaneFlows (SimilaritySolution, Vorticity, Stress).

Exact/AnalyticalSolutionofNavier-StokesEquation:Reynoldsnumber,Nondimensionalization,ImportanceofReynoldsnumbertoNavier-StokesEquation,ExactSolutionofNavier-StokesEquation(Couette-Poisseuilleflow,FlowofaViscousFluidwithFreeSurfaceonanInclined Plate)

Incompressible Viscous Flows via Finite Difference Methods: Variable arrangement (Cellcenter / Colocated arrangement orStaggered Gird), One-Dimensional Computations by FiniteDifferenceMethods,Spacediscretisation(SimpleandgeneralmethodsbasedonTaylor'sseriesfor first, second, and fourth order accuracy, and hence Accuracy of the Discretisation Process),Time discretization(Explicit Algorithm, Implicit Algorithm, and Semi-implicit Algorithm),Solutionof Couette flow usingFTCSand Crank-Nicolson methods.

Learningoutcomesofthecourse:

Uponsuccessfulcompletionofthiscourse, the students will learn the following:

- 1. Thegeneral conceptof what isfluid and itsproperties, and different kinds offlows.
- 2. Preliminaries(substantialderivative,differenttypesofforces,etc)forthederivation of governingequation forfluid flow.
- 3. DerivationofGoverningEquations(Continuity,Navier-StokesandEnergy)inamathematicalflavour.
- 4. Implementation of Initial and Boundary Conditions for the governing equations.
- 5. ExactSolutionoftheNavier-StokesEquationinsomeofthespecialcases,like,Couette-Poisseuilleflow.
- 6. Calculatemomentumandthermalboundarylayerthickness,thefrictionofforceonthe plate,flowrate,point ofseparation andreattachment,governingequations forboundarylayer flows
- 7. Scaling theequationsofmotion d tosee therole of nonlinear terms intheNavier-Stokesequation, derivation of Reynolds averageNavier-Stokes (RANS) equation.

MTM-202

Cubic spline interpolation. Lagrange's bivariate interpolation. Approximation of function. Chebyshev polynomial Minimax property. Curve fitting by

leastsquaremethod.Useoforthogonalpolynomials.Economization ofpowerseries Numericalintegration:Newton-Cotesformulae-opentype.GaussianquadratureGauss-Legendre,Gauss-ChebyshevIntegration byMonteCarlo method.

Rootsofpolynomialequation:Bairstowmethod.Solutionofasystemofnon-linearequationsby fixed point method and Newton-Raphson methods. Convergence and rate of convergence.Solutionofasystemoflinearequations:Matrixinverse.LUdecompositionmethodSoluti onoftri-diagonalsystem of equationsIII-conditioned linearsystems Relaxationmethod.

Eigenvalueproblem.Powermethod.Jacobi'smethod.Solution of ordinary differential equation: Runge-Kutta method to solve a system of equationsand second order IVP. Predictor-corrector method: Milne's method. StabilitySolution ofsecondorder boundaryvalue problem byfinite differenceand finiteelement methods.Partial differential equation: Finite difference scheme. Parabolic equation: Crank-Nicolsonmethod.Iteration methodtosolve Elliptic and hyperbolicequations.

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. Interpolationusingsplineinterpolation.
- 2. Approximationofafunction using the least square method, orthogonal polynomials.
- 3. IntegrationusingGaussianquadrature.
- 4. SolutionofordinarydifferentialequationsusingRK-methods,predictorcorrectormethod,finitedifferencemethod,the finite elementmethod.
- 5. Solutionofasystemoflinearandnon-linear equationsandmatrixinversionwithpivoting.
- 6. Computationoftheeigenvaluesandeigenvectorsofamatrix.
- 7. Solution of the partial differential equations (finite difference method) and analysis of stability of the methods to solve ODEs and PDEs.
- 8. Student will understand the theory behind these methods. The programming skill will increaseafter this course and hence they can write computer programs of any mathematical and logicalproblems.

12

MTM-203 Unit-1:AbstractAlgebra

Groups: Morphism of groups. Quotient groups. Fundamental theorem on homomorphism of groups. Isomorphism theorems. Automorphism. Solvable groups and theorems on them.

Directproduct.Conjugacy. Conjugateclasses.Classequation.Theoremsonfinitegroups.Cauchy's theorem. Sylow's theorem. Application of Sylow's theorem, Simple groups,Permutationgroups, Cayleytheorem, Groupactions.

Rings and Field: Integral domain. Fields. Skew fields. Quotient rings. Morphism of rings.Ideals(Primeandmaximal).Isomorphismtheorem.Euclideandomain.Principalidealdomain.Uniquefactorizatio n domain. Polynomial rings.

Field extensions, Finite, algebraic and finitely generated field extensions, Classical ruler and compass constructions, Splitting fields and normal extensions, algebraic closures. Finite fields, Cyclotomic fields, Separable and inseparable extensions.

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. Analyze and demonstrate examples of solvable groups and their properties of them.
- 2. Understandthe importance of field extension.
- 3. Analyzeanddemonstrate examples of
 - the classical ruler and compassion structions, normal extensions and separable extensions.
- 4. Understandthe Galois group of a field extension.

Unit-2: Linear Algebra25

Review of Linear transformations and matrix representation of Linear transformation, Linearoperators, Isomorphism, Isomorphism theorems, Invertibility and change of coordinate matrix, Thedual space, Minimal polynomial, Diagonlization.

CanonicalForms:Triangularcanonicalform,Nilpotenttransformations,Jordancanonicalform,Therational canonical form.

Inner product spaces, Hermitian, Unitary and Normal transformations, Spectral theorem.Bilinearforms,SymmetricandSkew-symmetricbilinearforms,Sylvester's lawofinertia.

Learningoutcomesofthecourse:

Uponsuccessfulcompletionofthiscourse, the students will learn the following:

- 1. The conceptofal inear transformation, innerproduct space, bil inear forms, quadratic forms, canonical for ms, minimal polynomial and Jordan canonical forms.
- 2. Diagonalisationprocessofalinearoperator.
- 3. Adetailsunderstandingofinner-productspace, dualspace and quotientspace.
- 4. Acompleteideaaboutbilinearform.

MTM-204B

Ancient Mathematical Sources, Mathematics in Ancient Mesopotamia, The Numeral Systemand Arithmetic Operations, Geometric and Algebraic Problems, Mathematical Astronomy, Mathematics in Ancient Egypt, Geometry, Assessment of Egyptian Mathematics, GreekMathematics, TheDevelopment of Pure Mathematics, The Pre-Euclidean Period, The Elements, The Classical Problems, Geometry in the 3rd Century BCE, Archimedes, Three Apollonius, AppliedGeometry, LaterTrendsinGeometry and Arithmetic, GreekTrigonometry and M ensuration, Number Theory, Survival and Influence of Greek Mathematics. Mathematics inthe Islamic World (8th–15th Century), Origins, Mathematics in the 9th Century, Mathematicsinthe10thCentury,OmarKhayyam,IslamicMathematicstothe15thCenturyTheFounda tionsof Mathematics : Ancient Greece to the Enlightenment, Arithmetic or Geometry, Being VersusBecoming, Universals, The Axiomatic Method, Number Systems, The Reexamination of Infinit y, Calculus Reopens Foundational The Philosophy of Mathematics: Mathematical Platonism, Traditional The Philosophy of Mathematics and the Philosophy of Mathematical Platonism, Traditional The Philosophy of Mathematics and the Philosophy of Mathematics and the Philosophy of Mathematical Platonism, Traditional The Philosophy of Mathematics and the Philosophy of Mathematics andnalPlatonism,NontraditionalVersions,MathematicalAnti-Platonism,Realistic Anti-Platonism, Nominalism. Logicism, Intuitionism. and Formalism, MathematicalPlatonism:ForandAgainst,TheFregeanArgumentforPlatonism,TheEpistemological Argument, Against Platonism.

Learningoutcomesofthecourse: Uponsuccessful completion of this course, the students will learn the following:

1. Ageneralideaoftheevolution of some of the major concepts of modern mathematics.

2.

Understandbasic, fundamental arguments that we redeveloped centuries a go and a restillof central importance to day.

Stress: Body force. Surface forces. Cauchy's stress principle. Stress vector. State of stress at apoint.Stresstensor.Thestressvector-

stresstensorrelationship.Forceandmomentequilibrium.StresstensorsymmetrystressquadricofCauchy.Stresstransformationlaws.Principalstress.Stressinvariant. Stress ellipsoid.

Strain:DeformationGradients.DisplacementGradientDeformationtensor.Finitestraintensors.Small deformation theory-infinitesimal strain tensor. Relative displacement. Linear rotationtensor. Interpretation of the linear strain tensors. Strength ratio. Finite strain interpretation.Principal strains. Strain invariant. Cubical dilatation . Compatibility equation for linear strain.Strain energy function. Hook's law. Saint –Venant's principal. Airy's strain function. Isotropicmedia.Elasticconstrains.Moduliofelasticityofisotropicbodiesandtheirrelation.Displacementequat ion ofmotion. Waves inisotropic elastic media.

Perfectfluid:Kinematicsoffluid.Lagrangianmethod..Eulerianmethod.Acceleration.Equationof continuity. The boundary surface..Stream lines and path lines. Irrotational motion and itsphysical interpretation. Velocity potential. Euler's equation of motion of an in viscid fluid.Cauchy's integral. Bernoulli's equation. Integration of Euler's equation. Impulsive motion offluid.Energyequation.Motionintwodimensions.ThestreamfunctionsComplexpotential.

Source, sink and doublet and their images. Milne-Thompson circle theorem and its application.Vorticity.Flowandcirculation.Kelvin'scirculationtheorem.Kelvin'sminimumenergytheorem.

References:

- 1. ContinuumMechanics:T.J.Chung,Prentice–Hall.
- 2. Continuum Mechanics: Schaum's Outline of Theory and Problem of

ContinuumMechanics:GedrgeR. Mase, McGraw Hill.

3. Mathematical Theory of Continuum Mechanics: R.N.Chatterjee, Narosa PublishingHouse.

ContinuumMechanics:A.J.M.Spencer,Longman

Learning outcomes of the course:

Upon successful completion of this course, the students will learn the following:

1. The concept of strain deformation of an object as a continuum which assumes that the substance of the object completely fills the space it occupies.

2. The knowledge about stress vector which is applied on material points in an object.

3. The relationship between strain tensor and stress tensors in an elastic substance.

4. Fundamental physical laws such as the conservation of mass, the conservation of momentum, and the conservation of energy to be applied to such models to derive differential equations describing the behavior of such objects, and some information about the particular material studied to be added through constitutive relations.

MTM-206 General Topology

TopologicalSpaces:opensets,closedsets,neighborhoods,basis,sub-basis,limitpoints,closures, interiors, continuous functions, homeomorphisms. Examples of topological spaces:subspacetopology,producttopology,metrictopology,ordertopology,Quotient Topology. Connectedness and Compactness: Connected spaces, connected subspaces of the real line,Componentsandlocalconnectedness,Compactspaces,Local-

compactness, Tychnoff's Theoremon compact spaces.

Separation Axioms: 1st and 2nd countable spaces, Hausdorff spaces, Regularity, CompleteRegularity, Normality.

 $Ury sohn Lemma, Ury sohn Metrization Theorem, \ Tietze Extension theorem (statement only).$

References:

- 1. J.R.Munkres, Topology, 2nd Ed., PearsonEducation(India).
- 2. M.A.Armstrong, BasicTopology,Springer (India).
- 3. K.D.Joshi,IntroductiontoGeneralTopology,NewAge International,NewDelhi.
- 4. G.F.Simmons,IntroductiontoTopologyandModernAnalysis,McGraw-
 - Hill,NewYork.
- 5. J.L.Kelley, General Topology, Van Nostrand, Princeton.

Learning outcomes of the course:

Upon successful completion of this course, students will learn the following:

 How the topology on a space is determined by the collection of open sets, by the collection of closed sets, or by a basis of neighbourhoods at each point.
Subspace topology, order topology, product topology, metric topology and

2. Subspace topology, order topology, product topology, metric topology and quotient topology.

3. What it means for a function to be continuous?

4. Urysohn Lemma and the Tietze extension theorem and can characterize metrizable spaces.

MTM-301 PartialDifferentialEquations andGeneralizedFunctions 50

Differential Equations: First order PDE in two independent variables and the Cauchyproblem. Semi-linear and quasilinear equations in two-independent variables. Second orderlinear PDE. Adjoint and self-adjoint equations. Reduction to canonical forms. Classifications.Fundamentalequations: Laplace, Waveand Diffusionequations.

Hyperbolic equations: Equation of vibration of a string. Existence. uniqueness and continuous dependence of the solution on the initial conditions. Methodo fseperation of variables. D'Alembert's solution for the vibration of an infinite string. Domain of dependence. Higher-dimensional wave equations.

Elliptic equations: Fundamental solution of Laplace's equations in two variables. Harmonicfunction. Characterization of harmonic function by their mean value property. Uniqueness.Continuous dependence and existence of solutions. Method of separation of variables for thesolutions of Laplace's equations. Dirichlet's and Naumann's problems. Green'sfunctions for the Laplace's equations in two dimensions. Solution of Dirichlet's and Naumann's problem forsometypical problemslike adisc and asphere.Poisson's general solution.

Parabolic equations: Heat equation- Heat conduction problem for an infinite rod- Heatconduction a finite rodexistence and uniqueness of the solution.

GeneralizedFunctions:Diracdeltafunctionanddeltasequences.Testfunctions.Linearfunctionals.Regularandsingulard istributions.Sokhoski-Plemeljformulas.Operationsondistributions. Derivatives. Transformation properties of delta function. Fourier transform of generalized functions.

References:

- 1. Y.PinchoverandJ.Rubinstein,AnIntroductiontoPartialDifferentialEquations,Cambridge UniversityPress.
- 2. F.John, Partial Differential Equations, 3rd ed., NarosaPubl.Co., NewDelhi.
- 3. L.C.Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, AMS, Providence.
- 4. E.Zauderer, Partial Differential Equations of Applied Mathematics, 2nded., John Wiley and Sons, New York.
- 5. S.Rao, IntroductiontoPartialDifferentialEquations, 3rdEdition, PHILearning PrivateLimited, NewDelhi.

J.J. Duistermaatand J.A. C. Kolk, Distributions Theoryand Applications, Birkhauser

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. Usetheknowledgeoffirstandsecondorderpartialdifferentialequations(PDEs), the general structure of solutions, and analytic methods for solutions.
- 2. Classification of PDEs, analytical methods, and physically interpretation of the solutions.
- 3. SolutionofstandardPDEs(Wave,Heat&Laplaceequations)usingseparationofvariablesandAnalyset he stabilityandconvergenceproperties of this method.
- 4. FindingthesolutionofDirichlet'sandNeumann'sproblemsforsometypicalproblemslikeaDiscan d asphere.
- 5. Usetheknowledgeoffirstandsecondorderpartialdifferentialequations(PDEs), the general structure of solutions, and analytic methods for solutions.
- 6. Classification of PDEs, analytical methods, and physically interpretation of the solutions.

MTM-302

TransformsandIntegral Equations

Fourier Transform: Fourier Transform, Properties of Fourier transform, Inversion formula, Convolution, arseval's relation, Multiple Fourier transform, Bessel's inequality, Application oftransformto Heat, WaveandLaplaceequations (Partial differential equations).

Laplace Transform: Laplace Transform, Properties of Laplace transform, Inversion formula of Laplace transform (Bromwich formula), Convolution theorem, Application to ordinary and partial differential equations.

WaveletTransform:Time-frequencyanalysis,Multi-

resolutionanalysis, Splinewavelets, Sealing function, Short-

time Fourier transforms, Wavelets eries, Orthogonal wavelets, Applications to signal and image processing.

IntegralEquation:Formulationofintegralequations,IntegralequationsofFredholmandVolterra type, Solution by successive substitutions and successive approximations, ResolventKernel Method, Integral equations with degenerate kernels, Abel's integral equation, IntegralEquations of convolution type and their solutions by Laplace transform, Fredholm's theorems,Integral equations with symmetric kernel, Eigen value and Eigen function of integral equationandtheirsimple properties, Fredholm alternative. **Learningoutcomesofthecourse:**

Uponsuccessfulcompletionofthiscourse, the students will learn the following:

- 1. Understandingofintegraltransformation, such as Laplace, Fourier and Wavelettransforms.
- 2. SolutionofODEandPDE, particularlyIVPor BVP, usingintegraltransformation.
- 3. Determination of the exact location of the solution using Wavelettransforms.
- 4. Formationand solution method of integral equations.
- 5. Solutionmethodofdynamicalproblemsandappliedbasedpracticalproblemsusingintegralequ ations.

MTM-303 Unit-1:DynamicalOceanologyandMeteorology 25

DynamicalOceanology:PropertiesofSeaWaterrelevanttoPhysicalOceanography:Measurementofdensit y,temperatureandsalinity,Relativedensity,sigma-tandspecificvolume,Densityand specificvolumeas functions of temperature,salinityand pressure;The Basic Physical Laws used in Oceanography and Classifications of Forces and Motions intheSea: Basiclaws, Classifications of forces andmotions;TheEquationofContinuityofVolume:Theconceptofcontinuityofvolume,Thederivationofth eequation of continuityofvolume.he Equation of Motion in Oceanography: The form of the equation of motion, Obtainingsolutions to the equations, including boundary conditions, The derivation of the terms in theequation of motion, The pressure term,Transforming from axes fixed in space to axes fixed intherotating earth,Gravitation and gravity,TheCoriolis terms,Other accelerations.

Meteorology:Dynamical Dynamical Meteorology: Composition of Atmosphere, AtmosphericStructure,BasicThermodynamicsoftheatmosphere,Poisson'sEquation,Potentialtemperature, air, hydrostatic Equation of state of drv equation, variation of Pressure withaltitude, hypsometric equation, dryadiabatic lapserate, Equation of moistair, Virtual temperature, mixing ratio specifichumidity, absolute humidity and relative humidity, fundamental atmospheric forces, derivation of momentum equation of an air parcel in vectorandCartesian form, Geostrophic wind and Gradient wind.

References:

1.Introductory Dynamical Oceanology, 2nd Ed, Pond, Stephen; Pickard, George L.,Butterworth-HeinemannLtdLinacreHouse, JordanHill,Oxford 0X28DP

Learningoutcomesofthecourse: Uponsuccessfulcompletionofthiscourse, students will learn the following:

- 1. Different thermodynamics laws are applied in the atmosphere to get a state of dry and moist airintheatmosphere.
- 2. The understanding of the basic physical processes occurring in the atmosphere in a mathematical perspective.
- 3. Measurement formulaoftheheightinthe atmosphere.
- 4. Measurementofhumidityvariables.
- 5. Stabilityanalysis of theatmosphere.

MTM-305BSpecialPaper-OR:AdvancedOptimizationandOperationsResearch50

Revised simplex method (with and without artificial variable). Modified dual simplex.LargeScale LinearProgramming:DecompositionPrincipleofDantzigandWolf.

Parametricandpost-

optimal analysis: Change in the objective function. Change in the requirement vector, Addition of available, Addition of a constraint, Parametric analysis of cost and requirement vector.

SearchMethods:Fibonacciand goldensectionmethod.Gradient Method: Method of conjugate directions for quadratic function, Streepest descent andDavodon-Fletcher-

Powell method. Methods of feasible direction and cutting hyperplanemethod.

Integer Programming: Gomory's cutting plane algorithm, Gomory's mixed integer problemalgorithm, A branchandbound algorithm.Goal Programming: Introduction, Difference between LP and GP approach, Concept of GoalProgramming, Graphical solution-method of Goal Programming, Modified simplex method ofGoalProgramming.OptimizationforSeveralVariables:Algebraicapproach,Algebraicgeometricalapproach,costdif ferentapproach,Inequalityapproach.

References:

- 1. S.S. Rao. Engineering optimization: theoryand practice. John Wiley&Sons, 2009.
- 2. Taha, Hamdy A. Operations research: An introduction. Pearson Education India, 2004.
- 3. Belegundu, AshokD., and TirupathiR. Chandrupatla. *Optimization concepts and applications in engineering*. CambridgeUniversityPress, 2011.

Sharma, S.D. Operations Research, Kedar Nath Ram Nath & Co., Meerut

Learningoutcomesofthecourse:

Uponsuccessful completion of this course, the students will learn the following:

- 1. Identificationanddevelopmentofoperationalresearchmodelsfromtheverbaldescriptionofthereal system.
- 2. Understandingthemathematical tools that areneeded tosolve optimization problems.
- 3. Useof mathematical softwareto solve theproposed models.
- 4. Development of report that describes the model and the solving technique, analyse the resultsand propose recommendations in language understandable to the decision-making processes inmanagementengineering.

MTM-306BSpecialPaper-OR:OperationalResearchModelling-I50

DynamicProgramming:Introduction,Natureofdynamicprogramming,Deterministicprocesses, Non-Sequential discrete optimization, Allocation problems, Assortment problems,Sequential discrete optimization, Long-term planning problem, Multi-stage decision process,ApplicationofDynamic Programminginproduction schedulingand routingproblems. Inventory control:Probabilisticinventory control(withandwithoutleadtime),Dynamicinventory

models. Basic concept of supply – chain management and two echelon supply chainmodel.

Network: PERT and CPM: Introduction, Basic difference between PERT and CPM, Steps of PERT/CPMTechniques, PERT/CPMNetwork components and precedence relationships, Critical path analysis, Probability in PERT analysis, Project Time-Cost, Trade-off, Updating of the project, Resource allocation — resources moothing and resource leveling.

ReplacementandMaintenanceModels:Introduction,FailureMechanismofitems,Replacementof items deteriorates with time, Replacement policy for equipments when value of moneychanges with constant rate during the period, Replacement of items that fail completely—individual replacement policy and group replacement policy, Other replacement problems — staffingproblem, equipment renewal problem.

Simulation:Introduction,Stepsofsimulationprocess,Advantagesanddisadvantagesofsimulation, Stochastic simulation and random numbers— Monte Carlo simulation, Randomnumber,Generation,Simulationof

InventoryProblems,SimulationofQueuingproblems,Roleofcomputers in Simulation, Applications of Simulations.

References:

1. Taha, HamdyA. Operations research: An introduction. Pearson Education India, 2004.

Learningoutcomesofthecourse:

Upon success ful completion of this course, the students will learn the following:

- 1. Inventorymanagementtechniquesin deterministicandprobabilisticenvironments.
- 2. Understandingofnetworkoptimizationtechniques.
- 3. Analysis of networkusing CPM and PERT.
- 4. Understandingoftheprojecttime-cost,tradeoff,updatingoftheprojectandresourceallocationtechniques.

MTM 401: Functional Analysis Credits 04

Course Content:

(a)Normed spaces, Continuity of linear maps, Bounded linear transformation. Set of all bounded linear transformation, Banach space Quotioent of normed linear spaces and its consequences. Hahn-Banach Extension theorem and Its applications, BanachSpaces. A NLS is Banachiff every absolutely convergent series is convergent. Conjugate spaces, Reflexive spaces.

(b) Uniform Boundedness Principle and its applications. Closed Graph Theorem, Open Mapping Theorem and their applications.Inner product spaces, Hilbert spaces, Orthonormal basis, Complete Orthonormal basis ,Cauchy-Schwarz Inequality, Parallelogram law. Projection theorem ,Inner product is a continuous operator. Relation betweenIPS and NLS. Bessel's inequality. Parseval's identity.

(c)Strong and Weak convergence of sequence of operators. Reflexivity of Hilbert Space. Riesz Representation theorem for bounded linear functional on a Hilbert space. Definition of self-adjoint operator, Normal, Unitary and Positive operators, Related simple theorems.

MTM 401:Unit-1: Fuzzy Mathematics with Applications :Credit 02

Course Content:

Basic concept and definition of fuzzy sets. Standard fuzzy sets operations and its properties.

Basic terminologies such as Support, α -Cut, Height, Normality, Convexity, etc. Fuzzy relations, Properties of α -Cut, Zadeh's extension principle, Interval arithmetic, Fuzzy numbers and their representation, Arithmetic of fuzzy numbers. Basic concept of fuzzy matrices. Basic concepts of fuzzy differential equations.

Linear Programming Problems with fuzzy resources:

- (i) Vendegay's approach
- (ii) Werner's approach

L.P.P. with fuzzy resources and objective: Zimmermann's approach. L.P.P. with fuzzy Parameters in the objective function. Definition of Fuzzy multiobjective linear programming problems.

Unit-2: Soft ComputingCredit 02

Course Content:

Introduction of soft computing, fuzzy logic, Genetic Algorithm, Neural networks, Application of fuzzy logic concepts in scientific problems, Solution of optimization problems using Genetic Algorithm. Neural Network approaches in scientific analysis, design, and diagnostic problems.

MTM-403 : Unit-1: Magneto Hydro-Dynamics Credit 02

Course Content:

Maxwell's electromagnetic field equations when medium in motion. Lorentz's force. The equations of motion of a conducting fluid. Basic equations. Simplification of the electromagnetic field equation. Magnetic Reynolds number. Alfven theorem. Magnetic body force. Ferraro's law of Isorotation. Laminar Flow of a viscous conducting liquid between parallel walls in transverse magnetic fields. M.H.D. Flow Past a porous flat plate without induced magnetic field. MHD Couelte Flow under different boundary conditions, Magneto hydro dynamics waves. Hall currents. MHD flow past a porous flat plate without induced magnetic field.

Unit-2: Stochastic Process and Regression

Credit 02

Course Content:

Stochastic Process: Markov chains with finite and countable state space. Classification of states. Limiting behaviour of n state transition probabilities. Stationary distribution.Branching process. Random walk. Gambler's ruin problem. Markov processes in continuous time. Poisson's process Partial correlation. Multiple correlations. Advanced theory of linear estimation.

MTM-404B Special Paper-OR: Nonlinear Optimization Credit-04

Course content:

Optimization: The nature of optimization and scope of the theory, The optimality criterion of Linear programming, An application of Farka's theorem, Existence theorem for linear systems, Theorems of the alternatives, Slater's theorem of alternatives, Motzkin theorem of alternatives, Optimality in the absence of differentiability and constraint qualification, Karlin's constraint qualification, Kuhn-Tucker's saddle point necessary optimality theorem, Fritz-John saddle point optimality theorem, Optimality criterion with differentiability and Convexity, Kuhn-Tucker's sufficient optimality theorem, Fritz-John stationary point optimality theorem, Duality in non-linear programming, Weak duality theorem, Wolfe's duality theorem, Duality for quadratic programming. Quadratic Programming ,Wolfe's modified simplex method, Beale's method, Convex programming. Stochastic .Chance Programming constraint programming technique. Geometric Programming, Geometric programming (both unconstrained and constrained) with positive and negative degree of difficulty. Games:Preliminary concept of continuous game, Bimatrix games, Nash equilibrium, and solution of bi-matrix games through quadratic programming (relation with nonlinear programming). Multi-objective Non-linear Programming:Introductory concept and solution procedure.

MTM-405B Special Paper-OR: Operational Research Modelling-II

Credit-02

Course Content:

Optimal Control:Performance indices, Methods of calculus of variations, Transversally

Conditions, Simple optimal problems of mechanics, Pontryagin's principle (with proof assuming smooth condition), Bang–bang Controls. Reliability:Concept, Reliability definition, System Reliability, System Failure rate, Reliability of the Systems connected in Series or / and parallel. MTBF, MTTF, optimization using reliability, reliability and quality control comparison, reduction of life cycle with reliability, maintainability, availability, Effect of age, stress, and mission time on reliability. Information Theory:Introduction, Communication Processes— memory less channel, the channel matrix, Probability relation in a channel, noiseless channel. A Measure of information- Properties of Entropy function, Measure of Other information quantities marginal and joint entropies, conditional entropies, expected mutual information, Axiom for an Entropy function, properties of Entropy function. Channel capacity, efficiency and redundancy. Encoding-Objectives of Encoding. Shannon-Fano Encoding Procedure, Necessary and sufficient Condition for Noiseless Encoding.

MTM-495B Special Paper-OR: Lab. (OR methods using MATLAB andLINGO) Credit -02

Course Content:

Problems on Advanced Optimization and Operations Researchare to be solved by using

MATLAB (one question carrying 9 marks) and LINGO (one question carrying 6 marks)

(Total: 15 Marks)

- 1. Problems on LPP by Simplex Method.
- 2. Problems on LPP by Revised Simplex Method.
- 3. Problems on Stochastic Programming.
- 4. Problems on Geometric Programming.
- 5. Problems on Bi-matrix Games.
- 6. Problems on Queuing Theory.
- 7. Problems on QPP by Wolfe's Modified Method.
- 8. Problems on IPP by Gomory's Cutting Plane Method.
- 9. Problems on Inventory.
- 10. Problems on Monte Carlo Simulation Technique.
- 11. Problems on Dynamic Programming.
- 12. Problems on Reliability.

MTM-406 :Dissertation Project Work

Course Content

Dissertation Project will be performed on Tutorial/ Review Work on ResearchPapers. For Project Work one class will be held in every week. Marks are divided as the following: Project Work-25, Presentation-15, and Viva-voce-10. Project Work of each student will be evaluated by the concerned internal teacher/supervisor and one External Examiner. The external examiner must be present in the day of evaluation.

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO21.1	~	~				~	~		~			~	
CO21.2	~	~			~			~		~		~	
CO22.1	>	~		>			~		~			~	
CO22.2	>	~		>			~	~	~		~		
CO23.1	~	~		~				~		~	~		
CO23.2	>	~		>			~		~		~		
CO24.1	>	~			~			~	~				~
CO24.2	>	~				~	~	~				~	
CO25.1	~	~			~		~		~		~		
CO25.2	~	~	~			~		~		~			
CO26	~	~		~				~		~	~		
CO27	~	~			~		~		~		~		

MAPPING OF CO, PO, PSO

JUSTIFICATION MATRIX OF CO WITH PO & PSO (High: 3, Medium: 2, Low: 1)

	Mapping	Correlation	Justification
CO21.1	PO1	HIGH	Acquire knowledge on how functional analysis uses and unifies ideas from vector spaces,

			the theory of metrics, and complex analysis.					
	PO2	HIGH	Students make questioning and reasoning to enrich in theory of normed and Banach-					
			spaces, including the Hahn-Banach theorem, the Uniform Boundedness principle.					
	PO6	MODERATE	Students able to find their scope of job real life problem learning application of this course.					
	PO7	HIGH	udents will be able to use research methods for this specified courses.					
	PSO2	HIGH	Students will able to Identify critical problems related to the theory of normed and Banachspaces, including the Hahn-Banach theorem,					
	PSO5	HIGH	Student realize to evaluate the problemofthe open mapping theorem, the closed graph theorem,					
CO21.2	PO1	HIGH	Students will able to obtain vast fundamental knowledge of theory of Hilbert spaces to other areas, including Fourier series, the theory of self-adjoin operator					
	PO2	HIGH	Student learn about the questioning on normal operators, unitary operators and positive Operator.					
	PO5	HIGH	Student apply knowledge on bounded linear transformation in self directed way.					
	PSO1	MODERATE	Students will think the topics of the Hilbert space theory, including Riesz representation theorem and weak convergence,					
	PSO3	LOW	Student realize how tocritically reflect over chosen strategies and methods in problem solving.					
	PSO5	HIGH	Student will able to understand the Uniform Boundedness principle by mathematical& statistical method					
CO22.1	PO1	HIGH	Students will able to obtain vast fundamental knowledge of fuzzy sets, numbers, matrix, knowledge of various operations on above fuzzy sets.					
	PO2	HIGH	Student learn about the questioning on the fuzzy ordinary differential equation, fuzzy linear programming problems, and fuzzy multi-objective linear programming problems.					
	PO4	HIGH	Students apply the knowledge of fundamental uncertain programming solving skill which occur almost all decision making problem					
	PO7	HIGH	Student able to think in advance topics related this subject and improve research skill					
	PSO2	HIGH	Students able to he problems and analyze to find information correctly in this course					
	PSO5	HIGH	Students acquired more detailed knowledge about the problem of this course by mathematical& statistical method					
CO22.2	PO1	HIGH	Students learn the concept.the basic concepts Soft computing like how it resemble biological processes more closely than traditional techniques.					
	PO2	HIGH	Acquire knowledge of questioning and reasoning on the fuzzy logic and system control.					
	PO3	HIGH	Students will able to build their interdisciplinary pathway by choosing genetic algorithm and hands on solving optimization problems.					
	PSO1	MODERATE	Students will able to think critical problems related to this course.					
	PSO2	HIGH	To help the learners for solving complex mathematical modeling of various real-life practical problems.					

	PSO4	HIGH	Student will able to identify and formulate the basic neural network models and illustrate with numerical examples.
CO23.1	PO1	HIGH	Students acquired sound and sufficient knowledge the basic concepts and the equations of flow of viscous fluids and the electromagnetic induction mechanism.
	PO2	HIGH	To understand how to make appropriate questions and reasoning in ability to translate a magnetic hydrodynamic problem in an appropriate mathematical form and to interpret the solutions of the equations established in physical terms.
	PO4	MODERATE	Student learn to communicate with other using concept of different aspect of this course
	PSO1	HIGH	Students will able to think critical problems related to this course
	PSO3	LOW	Student realize how to evaluate the problem by figures and models of this course
	PSO4	HIGH	Student will able to identify and formulate the problems of Skills in analysis and synthesis; the application of knowledge and problem solving, critical thinking and independent learning.
CO23.2	PO1	HIGH	Obtain knowledge on basic concepts from the theory of Markov chains
	PO2	HIGH	Acqrire knowledge about critical reasoning and questioning in Poisson processes and birth and death processes. The student also knows about Wiener Process and branching process
	PO4	MODERATE	Student learn to communicate with other using concept of different aspect of this course
	PO7	HIGH	Student able to think in advance topics related this subject and improve research skill
	PSO2	HIGH	Student learn to identify the problems and analyze to find information correctly in this course
	PSO4	LOW	Student will able to identify and derive the expression for three or more dimensional curve fitting, including multiple and partial correlations for relevant practical systems of metric space in a unique way
CO24.1	PO1	HIGH	Obtain concepts on Non-linear Optimization such as Geometric Programming, Quadratic Programming, Nash Equilibrium, Bimatrix Game, Stochastic Programming, Multi- Objective Programming
	PO2	HIGH	Students make questioning and reasoning to enrich in specific subject
	PO5	HIGH	Students apply the knowledgefor solving complex mathematical modeling of various real-life practical problemsinself directed way.
	PSO1	MODERATE	Students will able to think critical problems related to this course
	PSO2	HIGH	Student learn to identify the problems and analyze to find information correctly in this course.
	PSO6	HIGH	Student will able to create awareness and scope of applying this course
CO24.2	PO1	HIGH	Acquire knowledge on tackling of random parameters in optimization problems through stochasticprogramming
	PO2	HIGH	Students make questioning and reasoning to enrich in Bimatrix Game, Stochastic Programming
	PO6	MODERATE	Students able to find their scope of job real life problem learning application of this course
	PO7	HIGH	Students will be able to use research methods for this specified couses
	PSO1	HIGH	Students will able to think critical problems related to.Multi-objective Non-linear Programming.

	PSO5	HIGH	Student realize to evaluate the problem of this course by mathematical& statistical method			
CO25.1	PO1	HIGH	Obtain clear concept to Prepare and motivate future specialists to continue in their study by having an insightful overview of operations research.			
	PO2	HIGH	Students make questioning and reasoning to enrich in Understand the technique to solve the problem using Optimal Control theory.			
	PO5	MODERATE	Students gather the knowledge of Pontryagin's principle and Bang–bang Controls to so mechanical and other real life problems in self directed way.			
	P07	LOW	Student able to think in advance topics related this subject and improve research skil			
	PSO2	HIGH	Student learn to identify the problems and analyze to find information correctly in this course.			
	PSO4	HIGH	Student will able to identify and formulate the problems of Optimal Control in a unique way.			
CO25.2	PO1	HIGH	Students obtain a vivid knowledge thorough understanding of reliability of a component and a system of components.			
	PO2	HIGH	Acquire knowledge of questioning and reasoning onEntropy and its measurement and properties			
	PO3	MODERATE	Students will able to build their interdisciplinary pathway by choosing Reliability and Information Theory.			
	PO6	HIGH	Students will able to identify problems, solve using constructive reasoning on this course.			
	PSO1	HIGH	Students will able to think critical problems Shannon-Fano Encoding procedure and necessary and sufficient condition for noiseless encoding			
	PSO3	MODERATE	Student realize how to evaluate the problems of this course by figures and models			
CO26	PO1	HIGH	Learn vividly about Collecting data from different sources for the real-life optimization problems			
	PO2	HIGH	To understand how to make appropriate questions and reasoning of the programming.			
	PO4	MODERATE	Student learn to communicate with other using concept of different aspect of this course			
	PSO1	HIGH	Students will able to think critical problems related to this course			
	PSO3	HIGH	Student realize how to evaluate the problem by figures and models of this course			
	PSO4	MODERATE	Student will able to identify and formulate the problems and learners will handle the real- life application of optimization problems n a unique way			
CO27	PO1	HIGH	Obtain clear concept to demonstrate appropriate referencing and develop skills in other aspects of academic writing.			
	PO2	HIGH	Identify key research questions within the field of Demography on which students will carry out independent research.			
	PO5	HIGH	Apply the demographic/statistical research training acquired in the taught element of the programme by designing an appropriate research strategy and research methodology to carry out research in self directed way.			
	PO7	MODERATE	Student able to think in advance topics related this subject and improve research skil			

PSO2	HIGH	Student learn to identify the problems and analyze to find information correctly in this course.
PSO4	HIGH	Student will able to demonstrate knowledge and understanding of report writing in a unique way.

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO21.1	3	3				2	3		3			3	
CO21.2	3	3			3			2		3		3	
CO22.1	3	3		3			3		3			3	
CO22.2	3	3		3			3	3	3		3		
CO23.1	3	3		2				3		1	3		
CO23.2	3	3		2			3		3		1		
CO24.1	3	3			3			2	3				3
CO24.2	3	3				2	3	3				3	
CO25.1	3	3			2		1		3		3		
CO25.2	3	3	2			3		3		2			
CO26	3	3		2				3		3	2		
CO27	3	3			3		2		3		3		
Target	3	3	2	2.4	2.7	2.3	2.6	2.7	3	2.3	2.5	3	3

ARTICULATION MATRIX OF CO WITH PO & PSO

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

Department of Mathematics (UG & PG)

Attainment of Course & ProgrammeOutcomes

(<u>http://www.vidyasagar.ac.in/admission/PGProgram</u> <u>mes.aspx#</u>)

In the Outcome Based Education (OBE), assessment is done through one or more than one processes, carried out by the department, that identify, collect, and prepare data to evaluate the achievement of course outcomes (CO's).

The process for finding the attainment of Course outcomes uses various tools/methods. These methods are classified into two types: **Direct methods and indirect methods.**

Direct methods display the student's knowledge and skills from their performance in the class/assignment test, internal assessment tests, assignments, semester examinations, seminars, laboratory assignments/practicals, mini projects etc. These methods provide a sampling of what students know and/or can do and provide strong evidence of student learning.

Indirect methods such as course exit survey and examiner feedback to reflect on student's learning. They are used to assess opinions or thoughts about the graduate's knowledge or skills.

Following tables show the various methods used in assessment process that periodically documents and demonstrates the degree to which the Course Outcomes are attained. They include information on:

a) Listing and description of the assessment processes used to gather the data, andb) The frequency with which these assessment processes are carried out.

	Table 1 : Direct A	ised for CO attainment		
Sr. No.	Direct Assessment	Assessment	Description	
	Method	frequency		
1.	Internal Assessment Test	Twice in a	The Internal Assessment marks in a	
		Semester	theory paper shall be based on two tests	
			generally conducted at the end of 6th and	
			11th weeks of each semester. It is a	
			metric used to continuously assess the	
			attainment of course outcomes w.r.t	
			course objectives. Average marks of	
			two tests shall be the Internal	
			Assessment Marks for the relevant	
			course.	
2.	Lab Assignments /	Once in a	Lab Assignment/Experiment is a	
	experiments	week	qualitative performance assessment tool	
			designed to assess students practical	
			Minimum tan experiments need to be	
			conducted for every lab course	
3	End Semester	Once in a	End Semester examination (theory or	
5.	Examination	Semester	practical) are the metric to assess	
4	Practical Semester	Semester	whether all the course outcomes are	
ч.	Fxamination		attained or not framed by the course	
	Examination		incharge End Semester Examination is	
			more focused on attainment of all	
			course outcomes and uses a descriptive	
			questions.	
5.	Home Assignments	Twice in a	Assignment is a metric used to assess	
		Semester	student's analytical and problem solving	

			abilities. Every student is assigned with course related tasks & assessment will be done based on their performance. Grades are assigned depending on their innovation in solving/deriving the problems.
6.	Class / Assignment Test	Twice in a Semester	It is a metric used to continuously assess the student's understanding capabilities.
7.	Preliminary Examination	Once in a semester	Preliminary examination is the metric to assess whether all the course outcomes are attained or not by asking descriptive questions.
8.	Presentations	As per the requirement	Presentation is the metric used to assess student's communication and presentation skills along with depth of the subject knowledge. Seminars topics are given to the students that cover topics of current interest or provide in- depth coverage of selected topics from the core courses.

Table 2: Indirect Assessment tool used for CO attainment						
Sr.	Indirect Assessment	Assessment	Method Description			
No.	Method	frequency				
1	Course Exit Survey /	End of	Collect variety of information about			
	Students Feedback	Semester	course outcomes from the students			
	Survey		after learning entire course.			

The weightages given for various assessment tools used for the attainment of Course Outcomes are shown in table 3.

			Tools	Frequency	Weightage
			Assignment Tests	Twice in a semester	200/
			Internal Assessment	Twice in a semester	20%
			Home Assignments	Selected Topic	
			Practical	Weekly	
A ago g amo m t	Direct	Intonnol	MOCK Practicals	Once in a semester	
Assessment	Direct	Internal			

Table 3: List of Course	Assessment tools
-------------------------	------------------

Tools		Tools	MCQ		
			Sominar/Prosontations		
			Seminar/Tresentations		
			Mini Projects		
			Preliminary	Once in a	
			Examination	semester	
		External	End Semester	Once in a	80%
		Tools	Examination	semester	
			End Semester Practical	Once in a semester	
			End Semester Project	Only one	100%
				paper(MTM	
				Semester	
			End Semester Field	Only one	10%
			Visit	paper(MTM	
				Semester	
	Indirect		Course Exit Survey/	Once in a	On Marks
			Examiners' feedback	Semester	Allotted but
					As Per NAAC
					/ IQAC
					Guideline
	1	1			

DIRECT METHOD

Academic Session: 2023-2024(Semester IV)

Attainment report for M. SC in Mathematics

Target Level	Level Description Marks student scoring	$50 \rightarrow$ indicates % and above in the questions in Internal and
1	Below 40%	External tests
2	Below 40%-49%	
3	50% & about	

Student Name	Rol	SEM	SEM	SEM	SEM	CGPA	Marks	Total	% of
	1	Ι	п	ш	IV		Ohtai	Marks	mark
	Nu mh	SGPA	SGPA	SGPA	SGPA		ned		
	er								
	_								
Amarnath	00	0.47		7.67	9.75	8.48	949	1200	79.0
Rana	01	8.17	8.33						8
Avantika	00			6 50	0.02	6.96	751	1200	62 5
Mondal	00	6.17	5.92	0.30	0.03	0.00	/31	1200	02.J 8
Wondar	05								0
Basudev	00			7.83	9.58	8.23	923	1200	76.9
Maity	04	7.58	7.92						2
					0.70	0.1-			
Chayan Kumar	00	6 50	0 1 7	8.50	9.50	8.17	897	1200	/4./
Jana	05	0.50	0.17						5
	00			7.17	9.25	7.46	822	1200	68.5
Dipak Paria	06	6.08	7.33						0
Hemarjun	00			6.83	9.58	4.49	854	1200	71.1
Datta	07	7.17	7.58						7
	00			6.00	0.17	6.04	762	1200	62 E
Lalita Patra	11	6.25	6.33	0.00	9.17	0.94	/03	1200	05.5
	11	0.20	0.00						0
_	00	5.8		6.67	8.75	7.00	771	1200	64.2
Manoj Maity	12	3	6 75						5
		3	0.75						
Navanika	00	7.0		7.67	9.42	8.17	910	1200	75.8
Bhunia	14	0	8 5 8						3
		U	0.50						
D is Calvas	00			7.67	9.25	7.94	884	1200	73.6
Puja Sanoo	16	6.67	8.17						7
Sampa Bhunia	00	0.02	7.07	7.50	9.58	8.42	932	1200	77.6
•	18	8.92	1.67						7
	00		7.67	617	9.08	7 21	786	1200	65.5
Santu Bera	19	5.92	/10/	0.17	2.00	/.21	/00		0
									-
Savantani Giri	00		8.08	8.33	9.50	8.35	935	1200	77.9
Sayantani On	20	7.50							2
	00			0.02	0.02	0.10	1022	1200	96.0
Shipra Jana	00	8 33	9 23	ö.ö3	9.92	9.10	1032	1200	80.U 0
	21	0.00	5.55						U
	1		1	1		i			

Shubhashree	00			5.33	8.17	6.08	658	1200	54.8
Bishal	22	5.25	5.58						3
Soumitra Das	00			6.33	9.08	7.50	830	1200	69.1
Southitia Das	26	7.75	6.83						7
Cudinte Lleave	00			5.33	7.67	5.92	643	1200	53.5
Sudipta Hazra	28	4.92	5.75						8
	00			7.17	9.00	7.67	850	1200	70.8
SuryadipBarik	29	6.75	7.75						3
									_
	00			6.83	8.75	7.00	772	1200	64.3
lpsita Mishra	30	5.58	6.83						3
									C
Sanchayan				7.00	8.92	7.84	867	1200	72.2
, Laha		8.25	7.17						5

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

COs, POs &PSOs INDIRECTATTAINMENTINDIRECT METHOD Academic Session: 2021-2022 Semester IV

Programme Name: M. SC. (MATHEMATICS)

EXIT FORM SURVEY/ EXAMINER'S FEEDBACK IS CONDUCTED THROUGH QUESTIONNAIRE METHODS. OUT OF 10 QUESTIONS, FIRST 7 OF THEM RELATE DIRECTLY TO THE COS &POS &THE LAST 3 QUESTIONS RELATE TO THE PSOS. A SAMPLE FORM IS GIVEN BELOW:

MAHA	ARIMENIU	F MATHEMATI	CS, MUGBERIA	GANGADHAR		INDIRECT AS	SESSMENT METHOD	:: ACADEMIC SESS	ION 2023-2024
	VIDYALAY	A, BHUPATINAG	AR, PURBA ME	DINIPUR-721425	QUES	TIONNAIRE F	OR POST GRADUATE I	EXIT SURVEY (Tike	The appropriate option)
	INDIRECT ASS	ESSMENT METHOD :	:: ACADEMIC SESSIO	DN 2023-2024	(8	udents are :	isked to be comple	ted the following	10 questions)
QUES	TIONNAIRE FO	R POST GRADUATE E	XIT SURVEY (Tike T	he appropriate option)	Student Name:	Ship	a Jana		
(5	tudents are a	iked to be complet	led the following	10 questions)	Course Name:	UG / PG	Sem: 4	Year :	2023-24
Student Name:	Danfu	. Dera		102 24	1. Rate your s	kill developme	nt in terms of critical t	hinking & reasonin	offered in the courses?
Course Name:	UG / PG	Sem: 2	+ Year : Z	023-24	Excellent	Good	Average	Poor	
I. Rate your s	Good Good	t in terms of critical t Average	hinking & reasoning Poor	offered in the courses?	2. How much :	re the courses	offered to sur		
V					Excellent	Good	Average	ing an interdisciplin Poor	ary approach?
2. How much	are the courses	offered to you suggest	ting an interdisciplin	ary approach?		V			
Excellent	Good	Average	Poor		3. Rate the cou	rses as per the	ir communication skill	and attitude	
					Excellent	Good	Average	Poor	
3. Rate the co Excellent	Good Good	r communication skil Average	l and attitude. Poor						
V					4. Did the cour	ses help in dev	eloping self directed lea	arning?	
4. Did the cou	ırses help in dev	eloping self directed le	earning?		Excellent	Good	Average	Poor] ,
Excellent	Good	Average	Poor						
					5. Rate the cour	ses in terms of	their updation with re	cent developments	
5. Rate the co	urses in terms o	f their updation with r	recent developments		Excellent	Good	Average	Poor	٦
Excellent	Good	Average	Poor						
					6. Rate the cour	ses in terms of	their experimental lea	rning and employal	ility ontion?
6. Rate the con	urses in terms of	their experimental le	earning and employa	bility option?	Excellent	Good	Average	Poor	
LAteriein	V	Avelage	TON					-	
					7. Rate the course	es in tarms of	4.4. ·		
	irses in terms of	their environmental	awareness and relev	ance to sustainable measures?	Excellent	Good	Average	vareness and releva	ice to sustainable measures?
7. Rate the cou		Average	Poor			and the second		1001	
7. Rate the cou	Good				100000000000000000000000000000000000000		1		1
7. Rate the cou	Good	L V							
7. Rate the cou	Good				8. Rate the cours	es in terms of o	leveloping research or	ented ekill	
7. Rate the cou Excellent 8. Rate the cou	Good urses in terms of	developing research of	oriented skill.		8. Rate the cours Excellent	es in terms of o Good	leveloping research ori Average	ented skill.	

Programme Name:M. Sc (MATHEMATICS)

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

RATING AND RELATION OF POS AND PSOS WITH QUESTIONNARIE

Average Rating (Excellent- 4, Good-3, Average-2, Poor-1) Target level: 3

Questions	Average Rating
	(Out of 38 Students)
1. Did you acquire sound & sufficient knowledge of the courses taught?	3.7

2. Rate your skill development in terms of critical thinking & reasoning offered in the courses?	3.5
3. How much are the courses offered to you suggesting an interdisciplinary approach?	3.5
4. Rate the courses as per their communication skill and attitude	3.8
5. Did the courses help in developing self directed learning?	3.4
6. Rate the courses in terms of their updation with recent developments.	3.3
7. Rate the courses in terms of their experimental learning and employability option?	2.7
8. Rate the courses in terms of their environmental awareness and relevance to sustainable measures?	3.7
9.Rate the courses in terms of developing research oriented skill	3.8
10. How far the courses are relevant in terms of job opportunities and research/further studies?	3.9

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
Questio nier	Q1, Q3, Q2	Q1,Q 4,Q5	Q1, Q7, Q5	Q1, Q5, Q3	Q2, Q4, Q9	Q1, Q6, Q3	Q1, Q5, Q9	Q1,Q 10,Q6	Q1,Q 4,Q7	Q2,Q 6,Q9	Q1,Q 6,Q8	Q1, Q3, Q8	Q1, Q7, Q10
Avera ge Ratin g	3.5 7	3.63	3.27	3.53	3.7	3.5	3.67	3.63	3.4	3.53	3.57	3.63	3.43

Mugberia Gangadhar Mahavidyalaya

DEPARTMENT OF MATHEMATICS

FINAL ATTAINMENT OF CO, PO&PSO

PROGRAMME NAME: M.Sc. IN MATHEMATICS

Direct Method: Average COs of all courses

	СО	СО	СО	СО	СО	СО	со	со	СО
	21.1, 21.2	22.1	22.2	23.1	23.2	24.1 24.2	25.1 25.2	26	27
Direct Attainment	3	3	3	3	3	3	3	3	3

In Direct Method, the target level is reached successfully.

Indirect Method: Average of PO & PSO with the questionnaire

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
	1	2	3	4	5	6	7	8	9	10	11	12	13
Indirect	3.57	3.63	3.27	3.53	3.7	3.5	3.67	3.63	3.4	3.53	3.57	3.63	3.43
Attainment													

In Indirect Method, the target level is reached successfully for POs & PSOs.

DEPARTMENT OF MATHEMATICS, MUGBERIA GANGADHAR MAHAVIDYALAYA, BHUPATINAGAR, PURBA MEDINIPUR-721425

The following list of students from 2023-2024 Batch have taken admission into HEIs for higher studies:

Name of student enrolling into higher education PG Course (2021- 2022)	Program Post Graduated from	Name of institution joined	Name of Programme admitted to
Soumitra Das	Department of Mathematics	Gandhari college	B.ED
Sudipta Hazra	Department of Mathematics	Yogodasatsangapalparamahavidya laya	B.ED
Nayanika Bhunia	Department of Mathematics	Odalchua PTTI& B.ED College	B.ED
Sampa Bhunia	Department of Mathematics	Prabhat Kumar college	B.ED
Dipak paria	Department of Mathematics	Netaji Subhas Primary Teachers Training Institute	B.ED
Sayantani Giri	Department of Mathematics	Netaji Subhas Primary Teachers Training Institute	B.ED
Suryadipbarik	Department of Mathematics	Netaji Subhas Primary Teachers Training Institute	B.ED
Puja sahoo	Department of Mathematics	Gandhari college	B.ED

The above document of COs & POs of Mathematics Departments is original and correct to best of the knowledge.

Full 12/24 **Bikash** Panda

Dept of Mathematics

State Aided College Teacher

(Knaily Co 12/2) Dr. Kalipada Maity

HOD & Associate Professor

Sontrom-06.12-2024 Dr. Swapan Kumar Misra

Principal

Dept of Mathematics

Mugberia Gangadhar Mahavidyalaya

Dr. Kalipada Maity Associate Professor of Mathematics Mugberia Gangadhar Mahavidyalaya

Principal Mugberia Gangadhar Mahavidyalaya

